cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
sitting
Voyager
Voyager
206 Views
Registered: ‎05-04-2014

model evaluation error with vai 1.3.2

Jump to solution

Hi,

I got an error when I did model evaluation with vai 1.3.2.

Here is the log.

========================================= float model summary =========================================
Model: "model"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 224, 224, 3) 0                                            
__________________________________________________________________________________________________
conv1_pad (ZeroPadding2D)       (None, 230, 230, 3)  0           input_1[0][0]                    
__________________________________________________________________________________________________
conv1_conv (Conv2D)             (None, 112, 112, 64) 9472        conv1_pad[0][0]                  
__________________________________________________________________________________________________
conv1_bn (BatchNormalization)   (None, 112, 112, 64) 256         conv1_conv[0][0]                 
__________________________________________________________________________________________________
conv1_relu (Activation)         (None, 112, 112, 64) 0           conv1_bn[0][0]                   
__________________________________________________________________________________________________
pool1_pad (ZeroPadding2D)       (None, 114, 114, 64) 0           conv1_relu[0][0]                 
__________________________________________________________________________________________________
pool1_pool (MaxPooling2D)       (None, 56, 56, 64)   0           pool1_pad[0][0]                  
__________________________________________________________________________________________________
conv2_block1_1_conv (Conv2D)    (None, 56, 56, 64)   4160        pool1_pool[0][0]                 
__________________________________________________________________________________________________
conv2_block1_1_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block1_1_conv[0][0]        
__________________________________________________________________________________________________
conv2_block1_1_relu (Activation (None, 56, 56, 64)   0           conv2_block1_1_bn[0][0]          
__________________________________________________________________________________________________
conv2_block1_2_conv (Conv2D)    (None, 56, 56, 64)   36928       conv2_block1_1_relu[0][0]        
__________________________________________________________________________________________________
conv2_block1_2_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block1_2_conv[0][0]        
__________________________________________________________________________________________________
conv2_block1_2_relu (Activation (None, 56, 56, 64)   0           conv2_block1_2_bn[0][0]          
__________________________________________________________________________________________________
conv2_block1_0_conv (Conv2D)    (None, 56, 56, 256)  16640       pool1_pool[0][0]                 
__________________________________________________________________________________________________
conv2_block1_3_conv (Conv2D)    (None, 56, 56, 256)  16640       conv2_block1_2_relu[0][0]        
__________________________________________________________________________________________________
conv2_block1_0_bn (BatchNormali (None, 56, 56, 256)  1024        conv2_block1_0_conv[0][0]        
__________________________________________________________________________________________________
conv2_block1_3_bn (BatchNormali (None, 56, 56, 256)  1024        conv2_block1_3_conv[0][0]        
__________________________________________________________________________________________________
conv2_block1_add (Add)          (None, 56, 56, 256)  0           conv2_block1_0_bn[0][0]          
                                                                 conv2_block1_3_bn[0][0]          
__________________________________________________________________________________________________
conv2_block1_out (Activation)   (None, 56, 56, 256)  0           conv2_block1_add[0][0]           
__________________________________________________________________________________________________
conv2_block2_1_conv (Conv2D)    (None, 56, 56, 64)   16448       conv2_block1_out[0][0]           
__________________________________________________________________________________________________
conv2_block2_1_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block2_1_conv[0][0]        
__________________________________________________________________________________________________
conv2_block2_1_relu (Activation (None, 56, 56, 64)   0           conv2_block2_1_bn[0][0]          
__________________________________________________________________________________________________
conv2_block2_2_conv (Conv2D)    (None, 56, 56, 64)   36928       conv2_block2_1_relu[0][0]        
__________________________________________________________________________________________________
conv2_block2_2_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block2_2_conv[0][0]        
__________________________________________________________________________________________________
conv2_block2_2_relu (Activation (None, 56, 56, 64)   0           conv2_block2_2_bn[0][0]          
__________________________________________________________________________________________________
conv2_block2_3_conv (Conv2D)    (None, 56, 56, 256)  16640       conv2_block2_2_relu[0][0]        
__________________________________________________________________________________________________
conv2_block2_3_bn (BatchNormali (None, 56, 56, 256)  1024        conv2_block2_3_conv[0][0]        
__________________________________________________________________________________________________
conv2_block2_add (Add)          (None, 56, 56, 256)  0           conv2_block1_out[0][0]           
                                                                 conv2_block2_3_bn[0][0]          
__________________________________________________________________________________________________
conv2_block2_out (Activation)   (None, 56, 56, 256)  0           conv2_block2_add[0][0]           
__________________________________________________________________________________________________
conv2_block3_1_conv (Conv2D)    (None, 56, 56, 64)   16448       conv2_block2_out[0][0]           
__________________________________________________________________________________________________
conv2_block3_1_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block3_1_conv[0][0]        
__________________________________________________________________________________________________
conv2_block3_1_relu (Activation (None, 56, 56, 64)   0           conv2_block3_1_bn[0][0]          
__________________________________________________________________________________________________
conv2_block3_2_conv (Conv2D)    (None, 56, 56, 64)   36928       conv2_block3_1_relu[0][0]        
__________________________________________________________________________________________________
conv2_block3_2_bn (BatchNormali (None, 56, 56, 64)   256         conv2_block3_2_conv[0][0]        
__________________________________________________________________________________________________
conv2_block3_2_relu (Activation (None, 56, 56, 64)   0           conv2_block3_2_bn[0][0]          
__________________________________________________________________________________________________
conv2_block3_3_conv (Conv2D)    (None, 56, 56, 256)  16640       conv2_block3_2_relu[0][0]        
__________________________________________________________________________________________________
conv2_block3_3_bn (BatchNormali (None, 56, 56, 256)  1024        conv2_block3_3_conv[0][0]        
__________________________________________________________________________________________________
conv2_block3_add (Add)          (None, 56, 56, 256)  0           conv2_block2_out[0][0]           
                                                                 conv2_block3_3_bn[0][0]          
__________________________________________________________________________________________________
conv2_block3_out (Activation)   (None, 56, 56, 256)  0           conv2_block3_add[0][0]           
__________________________________________________________________________________________________
conv3_block1_1_conv (Conv2D)    (None, 28, 28, 128)  32896       conv2_block3_out[0][0]           
__________________________________________________________________________________________________
conv3_block1_1_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block1_1_conv[0][0]        
__________________________________________________________________________________________________
conv3_block1_1_relu (Activation (None, 28, 28, 128)  0           conv3_block1_1_bn[0][0]          
__________________________________________________________________________________________________
conv3_block1_2_conv (Conv2D)    (None, 28, 28, 128)  147584      conv3_block1_1_relu[0][0]        
__________________________________________________________________________________________________
conv3_block1_2_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block1_2_conv[0][0]        
__________________________________________________________________________________________________
conv3_block1_2_relu (Activation (None, 28, 28, 128)  0           conv3_block1_2_bn[0][0]          
__________________________________________________________________________________________________
conv3_block1_0_conv (Conv2D)    (None, 28, 28, 512)  131584      conv2_block3_out[0][0]           
__________________________________________________________________________________________________
conv3_block1_3_conv (Conv2D)    (None, 28, 28, 512)  66048       conv3_block1_2_relu[0][0]        
__________________________________________________________________________________________________
conv3_block1_0_bn (BatchNormali (None, 28, 28, 512)  2048        conv3_block1_0_conv[0][0]        
__________________________________________________________________________________________________
conv3_block1_3_bn (BatchNormali (None, 28, 28, 512)  2048        conv3_block1_3_conv[0][0]        
__________________________________________________________________________________________________
conv3_block1_add (Add)          (None, 28, 28, 512)  0           conv3_block1_0_bn[0][0]          
                                                                 conv3_block1_3_bn[0][0]          
__________________________________________________________________________________________________
conv3_block1_out (Activation)   (None, 28, 28, 512)  0           conv3_block1_add[0][0]           
__________________________________________________________________________________________________
conv3_block2_1_conv (Conv2D)    (None, 28, 28, 128)  65664       conv3_block1_out[0][0]           
__________________________________________________________________________________________________
conv3_block2_1_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block2_1_conv[0][0]        
__________________________________________________________________________________________________
conv3_block2_1_relu (Activation (None, 28, 28, 128)  0           conv3_block2_1_bn[0][0]          
__________________________________________________________________________________________________
conv3_block2_2_conv (Conv2D)    (None, 28, 28, 128)  147584      conv3_block2_1_relu[0][0]        
__________________________________________________________________________________________________
conv3_block2_2_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block2_2_conv[0][0]        
__________________________________________________________________________________________________
conv3_block2_2_relu (Activation (None, 28, 28, 128)  0           conv3_block2_2_bn[0][0]          
__________________________________________________________________________________________________
conv3_block2_3_conv (Conv2D)    (None, 28, 28, 512)  66048       conv3_block2_2_relu[0][0]        
__________________________________________________________________________________________________
conv3_block2_3_bn (BatchNormali (None, 28, 28, 512)  2048        conv3_block2_3_conv[0][0]        
__________________________________________________________________________________________________
conv3_block2_add (Add)          (None, 28, 28, 512)  0           conv3_block1_out[0][0]           
                                                                 conv3_block2_3_bn[0][0]          
__________________________________________________________________________________________________
conv3_block2_out (Activation)   (None, 28, 28, 512)  0           conv3_block2_add[0][0]           
__________________________________________________________________________________________________
conv3_block3_1_conv (Conv2D)    (None, 28, 28, 128)  65664       conv3_block2_out[0][0]           
__________________________________________________________________________________________________
conv3_block3_1_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block3_1_conv[0][0]        
__________________________________________________________________________________________________
conv3_block3_1_relu (Activation (None, 28, 28, 128)  0           conv3_block3_1_bn[0][0]          
__________________________________________________________________________________________________
conv3_block3_2_conv (Conv2D)    (None, 28, 28, 128)  147584      conv3_block3_1_relu[0][0]        
__________________________________________________________________________________________________
conv3_block3_2_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block3_2_conv[0][0]        
__________________________________________________________________________________________________
conv3_block3_2_relu (Activation (None, 28, 28, 128)  0           conv3_block3_2_bn[0][0]          
__________________________________________________________________________________________________
conv3_block3_3_conv (Conv2D)    (None, 28, 28, 512)  66048       conv3_block3_2_relu[0][0]        
__________________________________________________________________________________________________
conv3_block3_3_bn (BatchNormali (None, 28, 28, 512)  2048        conv3_block3_3_conv[0][0]        
__________________________________________________________________________________________________
conv3_block3_add (Add)          (None, 28, 28, 512)  0           conv3_block2_out[0][0]           
                                                                 conv3_block3_3_bn[0][0]          
__________________________________________________________________________________________________
conv3_block3_out (Activation)   (None, 28, 28, 512)  0           conv3_block3_add[0][0]           
__________________________________________________________________________________________________
conv3_block4_1_conv (Conv2D)    (None, 28, 28, 128)  65664       conv3_block3_out[0][0]           
__________________________________________________________________________________________________
conv3_block4_1_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block4_1_conv[0][0]        
__________________________________________________________________________________________________
conv3_block4_1_relu (Activation (None, 28, 28, 128)  0           conv3_block4_1_bn[0][0]          
__________________________________________________________________________________________________
conv3_block4_2_conv (Conv2D)    (None, 28, 28, 128)  147584      conv3_block4_1_relu[0][0]        
__________________________________________________________________________________________________
conv3_block4_2_bn (BatchNormali (None, 28, 28, 128)  512         conv3_block4_2_conv[0][0]        
__________________________________________________________________________________________________
conv3_block4_2_relu (Activation (None, 28, 28, 128)  0           conv3_block4_2_bn[0][0]          
__________________________________________________________________________________________________
conv3_block4_3_conv (Conv2D)    (None, 28, 28, 512)  66048       conv3_block4_2_relu[0][0]        
__________________________________________________________________________________________________
conv3_block4_3_bn (BatchNormali (None, 28, 28, 512)  2048        conv3_block4_3_conv[0][0]        
__________________________________________________________________________________________________
conv3_block4_add (Add)          (None, 28, 28, 512)  0           conv3_block3_out[0][0]           
                                                                 conv3_block4_3_bn[0][0]          
__________________________________________________________________________________________________
conv3_block4_out (Activation)   (None, 28, 28, 512)  0           conv3_block4_add[0][0]           
__________________________________________________________________________________________________
conv4_block1_1_conv (Conv2D)    (None, 14, 14, 256)  131328      conv3_block4_out[0][0]           
__________________________________________________________________________________________________
conv4_block1_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block1_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block1_1_relu (Activation (None, 14, 14, 256)  0           conv4_block1_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block1_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block1_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block1_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block1_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block1_2_relu (Activation (None, 14, 14, 256)  0           conv4_block1_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block1_0_conv (Conv2D)    (None, 14, 14, 1024) 525312      conv3_block4_out[0][0]           
__________________________________________________________________________________________________
conv4_block1_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block1_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block1_0_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block1_0_conv[0][0]        
__________________________________________________________________________________________________
conv4_block1_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block1_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block1_add (Add)          (None, 14, 14, 1024) 0           conv4_block1_0_bn[0][0]          
                                                                 conv4_block1_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block1_out (Activation)   (None, 14, 14, 1024) 0           conv4_block1_add[0][0]           
__________________________________________________________________________________________________
conv4_block2_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block1_out[0][0]           
__________________________________________________________________________________________________
conv4_block2_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block2_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block2_1_relu (Activation (None, 14, 14, 256)  0           conv4_block2_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block2_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block2_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block2_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block2_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block2_2_relu (Activation (None, 14, 14, 256)  0           conv4_block2_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block2_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block2_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block2_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block2_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block2_add (Add)          (None, 14, 14, 1024) 0           conv4_block1_out[0][0]           
                                                                 conv4_block2_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block2_out (Activation)   (None, 14, 14, 1024) 0           conv4_block2_add[0][0]           
__________________________________________________________________________________________________
conv4_block3_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block2_out[0][0]           
__________________________________________________________________________________________________
conv4_block3_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block3_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block3_1_relu (Activation (None, 14, 14, 256)  0           conv4_block3_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block3_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block3_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block3_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block3_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block3_2_relu (Activation (None, 14, 14, 256)  0           conv4_block3_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block3_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block3_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block3_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block3_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block3_add (Add)          (None, 14, 14, 1024) 0           conv4_block2_out[0][0]           
                                                                 conv4_block3_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block3_out (Activation)   (None, 14, 14, 1024) 0           conv4_block3_add[0][0]           
__________________________________________________________________________________________________
conv4_block4_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block3_out[0][0]           
__________________________________________________________________________________________________
conv4_block4_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block4_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block4_1_relu (Activation (None, 14, 14, 256)  0           conv4_block4_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block4_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block4_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block4_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block4_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block4_2_relu (Activation (None, 14, 14, 256)  0           conv4_block4_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block4_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block4_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block4_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block4_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block4_add (Add)          (None, 14, 14, 1024) 0           conv4_block3_out[0][0]           
                                                                 conv4_block4_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block4_out (Activation)   (None, 14, 14, 1024) 0           conv4_block4_add[0][0]           
__________________________________________________________________________________________________
conv4_block5_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block4_out[0][0]           
__________________________________________________________________________________________________
conv4_block5_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block5_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block5_1_relu (Activation (None, 14, 14, 256)  0           conv4_block5_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block5_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block5_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block5_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block5_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block5_2_relu (Activation (None, 14, 14, 256)  0           conv4_block5_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block5_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block5_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block5_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block5_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block5_add (Add)          (None, 14, 14, 1024) 0           conv4_block4_out[0][0]           
                                                                 conv4_block5_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block5_out (Activation)   (None, 14, 14, 1024) 0           conv4_block5_add[0][0]           
__________________________________________________________________________________________________
conv4_block6_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block5_out[0][0]           
__________________________________________________________________________________________________
conv4_block6_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block6_1_conv[0][0]        
__________________________________________________________________________________________________
conv4_block6_1_relu (Activation (None, 14, 14, 256)  0           conv4_block6_1_bn[0][0]          
__________________________________________________________________________________________________
conv4_block6_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block6_1_relu[0][0]        
__________________________________________________________________________________________________
conv4_block6_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block6_2_conv[0][0]        
__________________________________________________________________________________________________
conv4_block6_2_relu (Activation (None, 14, 14, 256)  0           conv4_block6_2_bn[0][0]          
__________________________________________________________________________________________________
conv4_block6_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block6_2_relu[0][0]        
__________________________________________________________________________________________________
conv4_block6_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block6_3_conv[0][0]        
__________________________________________________________________________________________________
conv4_block6_add (Add)          (None, 14, 14, 1024) 0           conv4_block5_out[0][0]           
                                                                 conv4_block6_3_bn[0][0]          
__________________________________________________________________________________________________
conv4_block6_out (Activation)   (None, 14, 14, 1024) 0           conv4_block6_add[0][0]           
__________________________________________________________________________________________________
conv5_block1_1_conv (Conv2D)    (None, 7, 7, 512)    524800      conv4_block6_out[0][0]           
__________________________________________________________________________________________________
conv5_block1_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block1_1_conv[0][0]        
__________________________________________________________________________________________________
conv5_block1_1_relu (Activation (None, 7, 7, 512)    0           conv5_block1_1_bn[0][0]          
__________________________________________________________________________________________________
conv5_block1_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block1_1_relu[0][0]        
__________________________________________________________________________________________________
conv5_block1_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block1_2_conv[0][0]        
__________________________________________________________________________________________________
conv5_block1_2_relu (Activation (None, 7, 7, 512)    0           conv5_block1_2_bn[0][0]          
__________________________________________________________________________________________________
conv5_block1_0_conv (Conv2D)    (None, 7, 7, 2048)   2099200     conv4_block6_out[0][0]           
__________________________________________________________________________________________________
conv5_block1_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block1_2_relu[0][0]        
__________________________________________________________________________________________________
conv5_block1_0_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block1_0_conv[0][0]        
__________________________________________________________________________________________________
conv5_block1_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block1_3_conv[0][0]        
__________________________________________________________________________________________________
conv5_block1_add (Add)          (None, 7, 7, 2048)   0           conv5_block1_0_bn[0][0]          
                                                                 conv5_block1_3_bn[0][0]          
__________________________________________________________________________________________________
conv5_block1_out (Activation)   (None, 7, 7, 2048)   0           conv5_block1_add[0][0]           
__________________________________________________________________________________________________
conv5_block2_1_conv (Conv2D)    (None, 7, 7, 512)    1049088     conv5_block1_out[0][0]           
__________________________________________________________________________________________________
conv5_block2_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block2_1_conv[0][0]        
__________________________________________________________________________________________________
conv5_block2_1_relu (Activation (None, 7, 7, 512)    0           conv5_block2_1_bn[0][0]          
__________________________________________________________________________________________________
conv5_block2_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block2_1_relu[0][0]        
__________________________________________________________________________________________________
conv5_block2_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block2_2_conv[0][0]        
__________________________________________________________________________________________________
conv5_block2_2_relu (Activation (None, 7, 7, 512)    0           conv5_block2_2_bn[0][0]          
__________________________________________________________________________________________________
conv5_block2_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block2_2_relu[0][0]        
__________________________________________________________________________________________________
conv5_block2_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block2_3_conv[0][0]        
__________________________________________________________________________________________________
conv5_block2_add (Add)          (None, 7, 7, 2048)   0           conv5_block1_out[0][0]           
                                                                 conv5_block2_3_bn[0][0]          
__________________________________________________________________________________________________
conv5_block2_out (Activation)   (None, 7, 7, 2048)   0           conv5_block2_add[0][0]           
__________________________________________________________________________________________________
conv5_block3_1_conv (Conv2D)    (None, 7, 7, 512)    1049088     conv5_block2_out[0][0]           
__________________________________________________________________________________________________
conv5_block3_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block3_1_conv[0][0]        
__________________________________________________________________________________________________
conv5_block3_1_relu (Activation (None, 7, 7, 512)    0           conv5_block3_1_bn[0][0]          
__________________________________________________________________________________________________
conv5_block3_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block3_1_relu[0][0]        
__________________________________________________________________________________________________
conv5_block3_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block3_2_conv[0][0]        
__________________________________________________________________________________________________
conv5_block3_2_relu (Activation (None, 7, 7, 512)    0           conv5_block3_2_bn[0][0]          
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block3_2_relu[0][0]        
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block3_3_conv[0][0]        
__________________________________________________________________________________________________
conv5_block3_add (Add)          (None, 7, 7, 2048)   0           conv5_block2_out[0][0]           
                                                                 conv5_block3_3_bn[0][0]          
__________________________________________________________________________________________________
conv5_block3_out (Activation)   (None, 7, 7, 2048)   0           conv5_block3_add[0][0]           
__________________________________________________________________________________________________
avg_pool (GlobalAveragePooling2 (None, 2048)         0           conv5_block3_out[0][0]           
__________________________________________________________________________________________________
softmax (Dense)                 (None, 2)            4098        avg_pool[0][0]                   
==================================================================================================
Total params: 23,591,810
Trainable params: 23,538,690
Non-trainable params: 53,120
__________________________________________________________________________________________________
None
========================================= END =========================================
========================================= Valid All =========================================
2021-05-05 07:57:30.056102: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcublas.so.10
2021-05-05 07:57:30.191077: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2021-05-05 07:57:30.802190: W tensorflow/stream_executor/gpu/asm_compiler.cc:81] Running ptxas --version returned 256
2021-05-05 07:57:30.833255: W tensorflow/stream_executor/gpu/redzone_allocator.cc:314] Internal: ptxas exited with non-zero error code 256, output: 
Relying on driver to perform ptx compilation. 
Modify $PATH to customize ptxas location.
This message will be only logged once.
 37/100 [==========>...................] - ETA: 13s - loss: 0.0056 - accuracy: 0.9973   WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 100.0 batches). You may need to use the repeat() function when building your dataset.
 37/100 [==========>...................] - 8s 210ms/step - loss: 0.0056 - accuracy: 0.9973
========================================= Valid Pass =========================================
37/36 [==============================] - 1s 36ms/step - loss: 0.0056 - accuracy: 0.9973
========================================= Valid Fail =========================================
WARNING:tensorflow:Model was constructed with shape (None, 224, 224, 3) for input Tensor("input_1:0", shape=(None, 224, 224, 3), dtype=float32), but it was called on an input with incompatible shape (None, 1).
Traceback (most recent call last):
  File "train_eval_h5.py", line 356, in <module>
    main()
  File "train_eval_h5.py", line 324, in main
    model.evaluate(eval_seq, steps=eval_number/FLAGS.eval_batch_size, verbose=1)        
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 108, in _method_wrapper
    return method(self, *args, **kwargs)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 1379, in evaluate
    tmp_logs = test_function(iterator)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 780, in __call__
    result = self._call(*args, **kwds)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 807, in _call
    return self._stateless_fn(*args, **kwds)  # pylint: disable=not-callable
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 2828, in __call__
    graph_function, args, kwargs = self._maybe_define_function(args, kwargs)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3210, in _maybe_define_function
    return self._define_function_with_shape_relaxation(args, kwargs)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3142, in _define_function_with_shape_relaxation
    args, kwargs, override_flat_arg_shapes=relaxed_arg_shapes)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3075, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 986, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 600, in wrapped_fn
    return weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "/opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 973, in wrapper
    raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:

    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1224 test_function  *
        return step_function(self, iterator)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1215 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1208 run_step  **
        outputs = model.test_step(data)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:1174 test_step
        y_pred = self(x, training=False)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:985 __call__
        outputs = call_fn(inputs, *args, **kwargs)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:386 call
        inputs, training=training, mask=mask)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/functional.py:508 _run_internal_graph
        outputs = node.layer(*args, **kwargs)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
        self.name)
    /opt/vitis_ai/conda/envs/vitis-ai-tensorflow2/lib/python3.7/site-packages/tensorflow/python/keras/engine/input_spec.py:180 assert_input_compatibility
        str(x.shape.as_list()))

    ValueError: Input 0 of layer conv1_pad is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: [None, 1]

How to solve it?

 

Thanks

Sitting 

0 Kudos
1 Solution

Accepted Solutions
sitting
Voyager
Voyager
161 Views
Registered: ‎05-04-2014

I found I set the wrong evaluation dataset number to zero. After I fixed the number and the problem was solved.

 

Thanks

Sitting

View solution in original post

1 Reply
sitting
Voyager
Voyager
162 Views
Registered: ‎05-04-2014

I found I set the wrong evaluation dataset number to zero. After I fixed the number and the problem was solved.

 

Thanks

Sitting

View solution in original post