cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 
edoardo.cerini
Visitor
Visitor
1,842 Views
Registered: ‎05-08-2015

Bus Interface property FREQ_HZ is not inerithed

 

Hello

 

I´m encountering an issue with the bus frequency when I´m routing one of two Buses, from 2 Axis stream interfaces to one Master AXI Stream interface.

 

I will explain better, this is my IP: 1 AXI lite slave (S00_AXI), 2 AXI stream slave (S00_AXIS, S01_AXIS), 1 AXI stream master (M00_AXIS)

 

schematic_Mux2.jpg

 

Basically I want to read through the S00_AXI (lite) what is written in the register slv_reg0(0) by the processor.

If it´s written 0, I want to connect the stream S00_AXIS to M00_AXIS,

If it´s written 1, I want to connect the stream S01_AXIS to M00_AXIS.

 

(a simple mux)

 

schematic_Mux.jpg

 

The one above is the simple schematic. (not relevant to the question, just uploaded to clarify what I´ve done).

 

Since I´m working with the same clock everywhere, I deleted all clock ports (as shown above)

 

in short:
I want to route one of the 2 S0X_AXIS to M00_AXIS depending on the ´sel´ value (from slv_reg0(0)).

 

But the problem is the property FREQ_HZ, which in some cases does not match with the selected bus frequency. For some ports the FREQ_HZ parameter is not propagating, and the bus is fixed at 100 Mhz, causing errors. And I´m not able to change it

 

schematic_Mux3.jpg

 

In the picture above, the S00_AXI bus has the correct FREQ_HZ value, (inherited by previous blocks at 50 Mhz)

 

while... the others are fixed to 100 Mhz and I´m not allowed to change them:

 

schematic_Mux4.jpg

 

In the picture above is shown S00_AXIS fixed to FREQ_HZ = 100 Mhz, and this value is read-only.

the same for  S01_AXIS and M00_AXIS.

 

 

How can I solve this issue?

 

I will attach the code below.

 

Thanks in advance

 

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Stream_Mux_v1_0_S00_AXI is
	generic (
		-- Users to add parameters here

		-- User parameters ends
		-- Do not modify the parameters beyond this line

		-- Width of S_AXI data bus
		C_S_AXI_DATA_WIDTH	: integer	:= 32;
		-- Width of S_AXI address bus
		C_S_AXI_ADDR_WIDTH	: integer	:= 4
	);
	port (
		-- Users to add ports here
        sel : out std_logic_vector (C_S_AXI_DATA_WIDTH-1 downto 0);
		-- User ports ends
		-- Do not modify the ports beyond this line

		-- Global Clock Signal
		S_AXI_ACLK	: in std_logic;
		-- Global Reset Signal. This Signal is Active LOW
		S_AXI_ARESETN	: in std_logic;
		-- Write address (issued by master, acceped by Slave)
		S_AXI_AWADDR	: in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
		-- Write channel Protection type. This signal indicates the
    		-- privilege and security level of the transaction, and whether
    		-- the transaction is a data access or an instruction access.
		S_AXI_AWPROT	: in std_logic_vector(2 downto 0);
		-- Write address valid. This signal indicates that the master signaling
    		-- valid write address and control information.
		S_AXI_AWVALID	: in std_logic;
		-- Write address ready. This signal indicates that the slave is ready
    		-- to accept an address and associated control signals.
		S_AXI_AWREADY	: out std_logic;
		-- Write data (issued by master, acceped by Slave) 
		S_AXI_WDATA	: in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
		-- Write strobes. This signal indicates which byte lanes hold
    		-- valid data. There is one write strobe bit for each eight
    		-- bits of the write data bus.    
		S_AXI_WSTRB	: in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);
		-- Write valid. This signal indicates that valid write
    		-- data and strobes are available.
		S_AXI_WVALID	: in std_logic;
		-- Write ready. This signal indicates that the slave
    		-- can accept the write data.
		S_AXI_WREADY	: out std_logic;
		-- Write response. This signal indicates the status
    		-- of the write transaction.
		S_AXI_BRESP	: out std_logic_vector(1 downto 0);
		-- Write response valid. This signal indicates that the channel
    		-- is signaling a valid write response.
		S_AXI_BVALID	: out std_logic;
		-- Response ready. This signal indicates that the master
    		-- can accept a write response.
		S_AXI_BREADY	: in std_logic;
		-- Read address (issued by master, acceped by Slave)
		S_AXI_ARADDR	: in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
		-- Protection type. This signal indicates the privilege
    		-- and security level of the transaction, and whether the
    		-- transaction is a data access or an instruction access.
		S_AXI_ARPROT	: in std_logic_vector(2 downto 0);
		-- Read address valid. This signal indicates that the channel
    		-- is signaling valid read address and control information.
		S_AXI_ARVALID	: in std_logic;
		-- Read address ready. This signal indicates that the slave is
    		-- ready to accept an address and associated control signals.
		S_AXI_ARREADY	: out std_logic;
		-- Read data (issued by slave)
		S_AXI_RDATA	: out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
		-- Read response. This signal indicates the status of the
    		-- read transfer.
		S_AXI_RRESP	: out std_logic_vector(1 downto 0);
		-- Read valid. This signal indicates that the channel is
    		-- signaling the required read data.
		S_AXI_RVALID	: out std_logic;
		-- Read ready. This signal indicates that the master can
    		-- accept the read data and response information.
		S_AXI_RREADY	: in std_logic
	);
end Stream_Mux_v1_0_S00_AXI;

architecture arch_imp of Stream_Mux_v1_0_S00_AXI is

	-- AXI4LITE signals
	signal axi_awaddr	: std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
	signal axi_awready	: std_logic;
	signal axi_wready	: std_logic;
	signal axi_bresp	: std_logic_vector(1 downto 0);
	signal axi_bvalid	: std_logic;
	signal axi_araddr	: std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
	signal axi_arready	: std_logic;
	signal axi_rdata	: std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal axi_rresp	: std_logic_vector(1 downto 0);
	signal axi_rvalid	: std_logic;

	-- Example-specific design signals
	-- local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	-- ADDR_LSB is used for addressing 32/64 bit registers/memories
	-- ADDR_LSB = 2 for 32 bits (n downto 2)
	-- ADDR_LSB = 3 for 64 bits (n downto 3)
	constant ADDR_LSB  : integer := (C_S_AXI_DATA_WIDTH/32)+ 1;
	constant OPT_MEM_ADDR_BITS : integer := 1;
	------------------------------------------------
	---- Signals for user logic register space example
	--------------------------------------------------
	---- Number of Slave Registers 4
	signal slv_reg0	:std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal slv_reg1	:std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal slv_reg2	:std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal slv_reg3	:std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal slv_reg_rden	: std_logic;
	signal slv_reg_wren	: std_logic;
	signal reg_data_out	:std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
	signal byte_index	: integer;
	signal aw_en	: std_logic;

begin
	-- I/O Connections assignments

	S_AXI_AWREADY	<= axi_awready;
	S_AXI_WREADY	<= axi_wready;
	S_AXI_BRESP	<= axi_bresp;
	S_AXI_BVALID	<= axi_bvalid;
	S_AXI_ARREADY	<= axi_arready;
	S_AXI_RDATA	<= axi_rdata;
	S_AXI_RRESP	<= axi_rresp;
	S_AXI_RVALID	<= axi_rvalid;
	-- Implement axi_awready generation
	-- axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	-- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	-- de-asserted when reset is low.

	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      axi_awready <= '0';
	      aw_en <= '1';
	    else
	      if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then
	        -- slave is ready to accept write address when
	        -- there is a valid write address and write data
	        -- on the write address and data bus. This design 
	        -- expects no outstanding transactions. 
	        axi_awready <= '1';
	        elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then
	            aw_en <= '1';
	        	axi_awready <= '0';
	      else
	        axi_awready <= '0';
	      end if;
	    end if;
	  end if;
	end process;

	-- Implement axi_awaddr latching
	-- This process is used to latch the address when both 
	-- S_AXI_AWVALID and S_AXI_WVALID are valid. 

	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      axi_awaddr <= (others => '0');
	    else
	      if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then
	        -- Write Address latching
	        axi_awaddr <= S_AXI_AWADDR;
	      end if;
	    end if;
	  end if;                   
	end process; 

	-- Implement axi_wready generation
	-- axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	-- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	-- de-asserted when reset is low. 

	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      axi_wready <= '0';
	    else
	      if (axi_wready = '0' and S_AXI_WVALID = '1' and S_AXI_AWVALID = '1' and aw_en = '1') then
	          -- slave is ready to accept write data when 
	          -- there is a valid write address and write data
	          -- on the write address and data bus. This design 
	          -- expects no outstanding transactions.           
	          axi_wready <= '1';
	      else
	        axi_wready <= '0';
	      end if;
	    end if;
	  end if;
	end process; 

	-- Implement memory mapped register select and write logic generation
	-- The write data is accepted and written to memory mapped registers when
	-- axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	-- select byte enables of slave registers while writing.
	-- These registers are cleared when reset (active low) is applied.
	-- Slave register write enable is asserted when valid address and data are available
	-- and the slave is ready to accept the write address and write data.
	slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID ;

	process (S_AXI_ACLK)
	variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0); 
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      slv_reg0 <= (others => '0');
	      slv_reg1 <= (others => '0');
	      slv_reg2 <= (others => '0');
	      slv_reg3 <= (others => '0');
	    else
	      loc_addr := axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
	      if (slv_reg_wren = '1') then
	        case loc_addr is
	          when b"00" =>
	            for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
	              if ( S_AXI_WSTRB(byte_index) = '1' ) then
	                -- Respective byte enables are asserted as per write strobes                   
	                -- slave registor 0
	                slv_reg0(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
	              end if;
	            end loop;
	          when b"01" =>
	            for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
	              if ( S_AXI_WSTRB(byte_index) = '1' ) then
	                -- Respective byte enables are asserted as per write strobes                   
	                -- slave registor 1
	                slv_reg1(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
	              end if;
	            end loop;
	          when b"10" =>
	            for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
	              if ( S_AXI_WSTRB(byte_index) = '1' ) then
	                -- Respective byte enables are asserted as per write strobes                   
	                -- slave registor 2
	                slv_reg2(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
	              end if;
	            end loop;
	          when b"11" =>
	            for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
	              if ( S_AXI_WSTRB(byte_index) = '1' ) then
	                -- Respective byte enables are asserted as per write strobes                   
	                -- slave registor 3
	                slv_reg3(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
	              end if;
	            end loop;
	          when others =>
	            slv_reg0 <= slv_reg0;
	            slv_reg1 <= slv_reg1;
	            slv_reg2 <= slv_reg2;
	            slv_reg3 <= slv_reg3;
	        end case;
	      end if;
	    end if;
	  end if;                   
	end process; 

	-- Implement write response logic generation
	-- The write response and response valid signals are asserted by the slave 
	-- when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	-- This marks the acceptance of address and indicates the status of 
	-- write transaction.

	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      axi_bvalid  <= '0';
	      axi_bresp   <= "00"; --need to work more on the responses
	    else
	      if (axi_awready = '1' and S_AXI_AWVALID = '1' and axi_wready = '1' and S_AXI_WVALID = '1' and axi_bvalid = '0'  ) then
	        axi_bvalid <= '1';
	        axi_bresp  <= "00"; 
	      elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then   --check if bready is asserted while bvalid is high)
	        axi_bvalid <= '0';                                 -- (there is a possibility that bready is always asserted high)
	      end if;
	    end if;
	  end if;                   
	end process; 

	-- Implement axi_arready generation
	-- axi_arready is asserted for one S_AXI_ACLK clock cycle when
	-- S_AXI_ARVALID is asserted. axi_awready is 
	-- de-asserted when reset (active low) is asserted. 
	-- The read address is also latched when S_AXI_ARVALID is 
	-- asserted. axi_araddr is reset to zero on reset assertion.

	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then 
	    if S_AXI_ARESETN = '0' then
	      axi_arready <= '0';
	      axi_araddr  <= (others => '1');
	    else
	      if (axi_arready = '0' and S_AXI_ARVALID = '1') then
	        -- indicates that the slave has acceped the valid read address
	        axi_arready <= '1';
	        -- Read Address latching 
	        axi_araddr  <= S_AXI_ARADDR;           
	      else
	        axi_arready <= '0';
	      end if;
	    end if;
	  end if;                   
	end process; 

	-- Implement axi_arvalid generation
	-- axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	-- S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	-- data are available on the axi_rdata bus at this instance. The 
	-- assertion of axi_rvalid marks the validity of read data on the 
	-- bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	-- is deasserted on reset (active low). axi_rresp and axi_rdata are 
	-- cleared to zero on reset (active low).  
	process (S_AXI_ACLK)
	begin
	  if rising_edge(S_AXI_ACLK) then
	    if S_AXI_ARESETN = '0' then
	      axi_rvalid <= '0';
	      axi_rresp  <= "00";
	    else
	      if (axi_arready = '1' and S_AXI_ARVALID = '1' and axi_rvalid = '0') then
	        -- Valid read data is available at the read data bus
	        axi_rvalid <= '1';
	        axi_rresp  <= "00"; -- 'OKAY' response
	      elsif (axi_rvalid = '1' and S_AXI_RREADY = '1') then
	        -- Read data is accepted by the master
	        axi_rvalid <= '0';
	      end if;            
	    end if;
	  end if;
	end process;

	-- Implement memory mapped register select and read logic generation
	-- Slave register read enable is asserted when valid address is available
	-- and the slave is ready to accept the read address.
	slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid) ;

	process (slv_reg0, slv_reg1, slv_reg2, slv_reg3, axi_araddr, S_AXI_ARESETN, slv_reg_rden)
	variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
	begin
	    -- Address decoding for reading registers
	    loc_addr := axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
	    case loc_addr is
	      when b"00" =>
	        reg_data_out <= slv_reg0;
	      when b"01" =>
	        reg_data_out <= slv_reg1;
	      when b"10" =>
	        reg_data_out <= slv_reg2;
	      when b"11" =>
	        reg_data_out <= slv_reg3;
	      when others =>
	        reg_data_out  <= (others => '0');
	    end case;
	end process; 

	-- Output register or memory read data
	process( S_AXI_ACLK ) is
	begin
	  if (rising_edge (S_AXI_ACLK)) then
	    if ( S_AXI_ARESETN = '0' ) then
	      axi_rdata  <= (others => '0');
	    else
	      if (slv_reg_rden = '1') then
	        -- When there is a valid read address (S_AXI_ARVALID) with 
	        -- acceptance of read address by the slave (axi_arready), 
	        -- output the read dada 
	        -- Read address mux
	          axi_rdata <= reg_data_out;     -- register read data
	      end if;   
	    end if;
	  end if;
	end process;


	-- Add user logic here
    sel <= (others => slv_reg0(0));
	-- User logic ends

end arch_imp;

library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity Stream_Mux_v1_0 is generic ( -- Users to add parameters here -- User parameters ends -- Do not modify the parameters beyond this line -- Parameters of Axi Slave Bus Interface S00_AXI C_S00_AXI_DATA_WIDTH : integer := 32; C_S00_AXI_ADDR_WIDTH : integer := 4; -- Parameters of Axi Slave Bus Interface S00_AXIS C_S00_AXIS_TDATA_WIDTH : integer := 32; -- Parameters of Axi Slave Bus Interface S01_AXIS C_S01_AXIS_TDATA_WIDTH : integer := 32; -- Parameters of Axi Master Bus Interface M00_AXIS C_M00_AXIS_TDATA_WIDTH : integer := 32; C_M00_AXIS_START_COUNT : integer := 32 ); port ( -- Users to add ports here -- User ports ends -- Do not modify the ports beyond this line -- Ports of Axi Slave Bus Interface S00_AXI s00_axi_aclk : in std_logic; s00_axi_aresetn : in std_logic; s00_axi_awaddr : in std_logic_vector(C_S00_AXI_ADDR_WIDTH-1 downto 0); s00_axi_awprot : in std_logic_vector(2 downto 0); s00_axi_awvalid : in std_logic; s00_axi_awready : out std_logic; s00_axi_wdata : in std_logic_vector(C_S00_AXI_DATA_WIDTH-1 downto 0); s00_axi_wstrb : in std_logic_vector((C_S00_AXI_DATA_WIDTH/8)-1 downto 0); s00_axi_wvalid : in std_logic; s00_axi_wready : out std_logic; s00_axi_bresp : out std_logic_vector(1 downto 0); s00_axi_bvalid : out std_logic; s00_axi_bready : in std_logic; s00_axi_araddr : in std_logic_vector(C_S00_AXI_ADDR_WIDTH-1 downto 0); s00_axi_arprot : in std_logic_vector(2 downto 0); s00_axi_arvalid : in std_logic; s00_axi_arready : out std_logic; s00_axi_rdata : out std_logic_vector(C_S00_AXI_DATA_WIDTH-1 downto 0); s00_axi_rresp : out std_logic_vector(1 downto 0); s00_axi_rvalid : out std_logic; s00_axi_rready : in std_logic; -- Ports of Axi Slave Bus Interface S00_AXIS s00_axis_tready : out std_logic; s00_axis_tdata : in std_logic_vector(C_S00_AXIS_TDATA_WIDTH-1 downto 0); s00_axis_tkeep : in std_logic_vector((C_S00_AXIS_TDATA_WIDTH/8)-1 downto 0); s00_axis_tlast : in std_logic; s00_axis_tvalid : in std_logic; -- Ports of Axi Slave Bus Interface S01_AXIS s01_axis_tready : out std_logic; s01_axis_tdata : in std_logic_vector(C_S01_AXIS_TDATA_WIDTH-1 downto 0); s01_axis_tkeep : in std_logic_vector((C_S01_AXIS_TDATA_WIDTH/8)-1 downto 0); s01_axis_tlast : in std_logic; s01_axis_tvalid : in std_logic; -- Ports of Axi Master Bus Interface M00_AXIS m00_axis_tvalid : out std_logic; m00_axis_tdata : out std_logic_vector(C_M00_AXIS_TDATA_WIDTH-1 downto 0); m00_axis_tkeep : out std_logic_vector((C_M00_AXIS_TDATA_WIDTH/8)-1 downto 0); m00_axis_tlast : out std_logic; m00_axis_tready : in std_logic ); end Stream_Mux_v1_0; architecture arch_imp of Stream_Mux_v1_0 is -- component declaration component Stream_Mux_v1_0_S00_AXI is generic ( C_S_AXI_DATA_WIDTH : integer := 32; C_S_AXI_ADDR_WIDTH : integer := 4 ); port ( S_AXI_ACLK : in std_logic; S_AXI_ARESETN : in std_logic; S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_AWPROT : in std_logic_vector(2 downto 0); S_AXI_AWVALID : in std_logic; S_AXI_AWREADY : out std_logic; S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0); S_AXI_WVALID : in std_logic; S_AXI_WREADY : out std_logic; S_AXI_BRESP : out std_logic_vector(1 downto 0); S_AXI_BVALID : out std_logic; S_AXI_BREADY : in std_logic; S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0); S_AXI_ARPROT : in std_logic_vector(2 downto 0); S_AXI_ARVALID : in std_logic; S_AXI_ARREADY : out std_logic; S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RRESP : out std_logic_vector(1 downto 0); S_AXI_RVALID : out std_logic; sel :out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0); S_AXI_RREADY : in std_logic ); end component Stream_Mux_v1_0_S00_AXI; signal sel : std_logic_vector(C_S00_AXI_DATA_WIDTH-1 downto 0); begin -- Instantiation of Axi Bus Interface S00_AXI Stream_Mux_v1_0_S00_AXI_inst : Stream_Mux_v1_0_S00_AXI generic map ( C_S_AXI_DATA_WIDTH => C_S00_AXI_DATA_WIDTH, C_S_AXI_ADDR_WIDTH => C_S00_AXI_ADDR_WIDTH ) port map ( S_AXI_ACLK => s00_axi_aclk, S_AXI_ARESETN => s00_axi_aresetn, S_AXI_AWADDR => s00_axi_awaddr, S_AXI_AWPROT => s00_axi_awprot, S_AXI_AWVALID => s00_axi_awvalid, S_AXI_AWREADY => s00_axi_awready, S_AXI_WDATA => s00_axi_wdata, S_AXI_WSTRB => s00_axi_wstrb, S_AXI_WVALID => s00_axi_wvalid, S_AXI_WREADY => s00_axi_wready, S_AXI_BRESP => s00_axi_bresp, S_AXI_BVALID => s00_axi_bvalid, S_AXI_BREADY => s00_axi_bready, S_AXI_ARADDR => s00_axi_araddr, S_AXI_ARPROT => s00_axi_arprot, S_AXI_ARVALID => s00_axi_arvalid, S_AXI_ARREADY => s00_axi_arready, S_AXI_RDATA => s00_axi_rdata, S_AXI_RRESP => s00_axi_rresp, S_AXI_RVALID => s00_axi_rvalid, sel => sel, S_AXI_RREADY => s00_axi_rready ); -- Add user logic here m00_axis_tvalid <= (s00_axis_tvalid AND NOT(sel(0))) OR (s01_axis_tvalid AND sel(0)); m00_axis_tdata <= (s00_axis_tdata AND NOT(sel(C_M00_AXIS_TDATA_WIDTH-1 downto 0))) OR (s01_axis_tdata AND sel(C_M00_AXIS_TDATA_WIDTH-1 downto 0)); m00_axis_tkeep <= (s00_axis_tkeep AND NOT(sel((C_S00_AXIS_TDATA_WIDTH/8)-1 downto 0))) OR (s01_axis_tkeep AND sel((C_S00_AXIS_TDATA_WIDTH/8)-1 downto 0)); m00_axis_tlast <= (s00_axis_tlast AND NOT(sel(0))) OR (s01_axis_tlast AND sel(0)); s00_axis_tready <= (m00_axis_tready AND NOT(sel(0))); s01_axis_tready <= (m00_axis_tready AND sel(0)); -- User logic ends end arch_imp;

 

 

 

0 Kudos
2 Replies
jg_bds
Scholar
Scholar
1,758 Views
Registered: ‎02-01-2013

@edoardo.cerini

 

Have you checked out http://www.xilinx.com/support/answers/56610.html ?

 

-Joe G.

 

0 Kudos
wblee
Observer
Observer
404 Views
Registered: ‎02-23-2018

Joe, I know this is years old, but you didn't even read his question AT ALL!  He literally just told you that the FREQ_HZ property is READ ONLY and you posted a solution that says to change it, which you can't.   

Xilinx has known about this bug FOR YEARS and has refused to do anything about it.

0 Kudos