UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

cancel
Showing results for 
Search instead for 
Did you mean: 

Edico Genome moves genomic analysis and storage to the cloud using Amazon’s AWS EC2 F1 Instance

Xilinx Employee
Xilinx Employee
0 0 30.8K

 

Edico Genome has been developing genetic-analysis algorithms for a while now. (See this Xcell Daily story from 2015, “FPGA-based Edico Genome Dragen Accelerator Card for IBM OpenPOWER Server Speeds Exome/Genome Analysis by 60x”). The company originally planned to accelerate its algorithm by developing an ASIC, but decided this was a poor implementation choice because of the rapid development of its algorithms. Once you develop an ASIC, it’s frozen in time. Instead, Edico Genome found that Xilinx FPGAs were an ideal match for the company’s development needs and so the company developed the Dragen Accelerator Card for exome/genome analysis.

 

This hardware was well suited to Edico Genome’s customers that wanted to have on-site hardware for genomic analysis but the last couple of years have seen a huge movement to cloud-based apps including genomic analysis. So Edico Genome moved its algorithms to Amazon’s AWS EC2 F1 Instance, which offers accelerated computing thanks to Xilinx UltraScale+ VU9P FPGAs. (See “AWS makes Amazon EC2 F1 instance hardware acceleration based on Xilinx Virtex UltraScale+ FPGAs generally available.”)

 

Edico Genome now offers cloud-based genomic processing and genomic storage in the cloud through Amazon’s AWS EC2 F1 Instance. Like its genomic analysis algorithms, the company’s cloud-based genomic storage takes advantage of the FPGA acceleration offered by Amazon’s AWS EC2 F1 Instance to achieve 2x to 4x compression. When you’re dealing with the human genome, you’re talking about storing 80Gbytes per genome so fast, 2x to 4x compression is a pretty important benefit.

 

This is all explained by Edico Genome’s VP of Engineering Rami Mehio in an information-packed 3-minute video: