UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

Model-based design allows you to rapidly iterate your design. Model-based design simulation is orders of magnitude faster than RTL simulation.

by Xilinx Employee on ‎12-21-2017 11:01 AM (25,926 Views)

 

Mathworks has been advocating model-based design using its MATLAB and Simulink development tools for some time because the design technique allows you to develop more complex software with better quality in less time. (See the Mathworks White Paper: “How Small Engineering Teams Adopt Model-Based Design.”) Model-based design employs a mathematical and visual approach to developing complex control and signal-processing systems through the use of system-level modeling throughout the development process—from initial design, through design analysis, simulation, automatic code generation, and verification. These models are executable specifications that consist of block diagrams, textual programs, and other graphical elements. Model-based design encourages rapid exploration of a broader design space than other design approaches because you can iterate your design more quickly, earlier in the design cycle. Further, because these models are executable, verification becomes an integral part of the development process at every step. Hopefully, this design approach results in fewer (or no) surprises at the end of the design cycle.

 

Xilinx supports model-based design using MATLAB and Simulink through the new Xilinx Model Composer, a design tool that integrates into the MATLAB and Simulink environments. The Xilinx Model Composer includes libraries with more than 80 high-level, performance-optimized, Xilinx-specific blocks including application-specific blocks for computer vision, image processing, and linear algebra. You can also import your own custom IP blocks written in C and C++, which are subsequently processed by Vivado HLS.

 

Here’s a block diagram that shows you the relationship among Mathworks’ MATLAB, Simulink, and Xilinx Model Composer:

 

 

 

Xilinx Model Composer.jpg 

 

 

 

Finally, here’s a 6-minute video explaining the benefits and use of Xilinx Model Composer: