UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

cancel
Showing results for 
Search instead for 
Did you mean: 

Swift Navigation uses Zynq SoC’s Hardware/Software Programmability to Competitive Advantage in Global Positioning System

Xilinx Employee
Xilinx Employee
0 0 28.7K

 

Back in August, I wrote about a series of GigE 3D imaging sensors based on Spartan-6 FPGAs from Carnegie Robotics. (See “Carnegie Robotics’ FPGA-based GigE 3D cameras help robots sweep mines from a battlefield, tend corn, and scrub floors.”) That blog post mentioned that Carnegie Robotics had teamed with GPS maker Swift Navigation to work on autonomous robots that would employ the 3D and positioning-system sensors from the two companies. That post also mentioned that the photo of Swift Navigation’s centimeter-accurate Piksi Multi multi-band, multi-constellation GNSS (global navigation satellite system) receiver clearly showed that the receiver is based on a Zynq Z-7020 SoC.

 

Now, Swift Navigation has just appeared in the latest “Powered by Xilinx” video. In this video, Swift Navigation’s CEO and Founder Timothy Harris describes his company’s use of the Zynq SoC in the Piksi Multi. The Zynq SoC’s programmable logic processes the incoming signals from multiple global-positioning satellite constellations on multiple frequencies and performs measurements on those signals that is normally performed by dedicated hardware. Then the Zynq SoC’s dual-core Arm Cortex-A9 MPCore processor calculates a physical position from those measurements.

 

The advantages that hardware and software programmability confer on Swift Navigation’s Piksi Multi includes the ability to quickly adapt the GNSS module for specific customer requirements and the ability to update, upgrade, and add features to the module via over-the-air transmissions. These capabilities give Swift Navigation a competitive advantage over competitive designs that employ dedicated hardware.

 

Here’s the video: