UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

AT&T’s “Porcupine” built with NI’s mmWave Transceiver System cuts 5G channel sounding from 15 min to 150msec

by Xilinx Employee ‎04-19-2017 12:39 PM - edited ‎04-19-2017 12:39 PM (365 Views)

 

AT&T recently announced the development of a one-of-a-kind 5G channel sounder—internally dubbed the “Porcupine” for obvious reasons—that can characterize a 5G transmission channel using 6000 angle-of-arrival measurements in 150msec, down from 15 minutes using conventional pan/tilt units. These channel measurements capture how wireless signals are affected in a given environment. For instance, channel measurements can show how objects such as trees, buildings, cars, and even people reflect or block 5G signals. The Porcupine allows measurement of 5G mmWave frequencies via drive testing, something that was simply not possible using other mmWave channel sounders. Engineers at AT&T used the mmWave Transceiver System and LabVIEW System Design Software including LabVIEW FPGA from National Instruments (NI) to develop this system.

 

 

 

AT&T Porcupine channel sounder.jpg

 

 

AT&T “Porcupine” 5G Channel Sounder

 

 

 

NI designed the mmWave Transceiver System as a modular, reconfigurable SDR platform for 5G R&D projects. This prototyping platform offers 2GHz of real-time bandwidth for evaluating mmWave transmission systems using NI’s modular transmit and receive radio heads in conjunction with the transceiver system’s modular PXIe processing chassis.

 

The key to this system’s modularity is NI’s 18-slot PXIe-1085 chassis, which accepts a long list of NI processing modules as well as ADC, DAC, and RF transceiver modules. NI’s mmWave Transceiver System uses the NI PXIe-7902 FPGA module—based on a Xilinx Virtex-7 485T—for real-time processing.

 

 

NI PXIe-7902 FPGA Module.jpg

 

 

NI PXIe-7902 FPGA module based on a Xilinx Virtex-7 485T

 

 

NI’s mmWave Transceiver System maps different mmWave processing tasks to multiple FPGAs in a software-configurable manner using the company’s LabVIEW System Design Software. NI’s LabVIEW relies on the Xilinx Vivado Design Suite for compiling the FPGA configurations. The FPGAs distributed in the NI mmWave Transceiver System provide the flexible, high-performance, low-latency processing required to quickly build and evaluate prototype 5G radio transceiver systems in the mmWave band—like AT&T’s Porcupine.

 

 

Labels
About the Author
  • Be sure to join the Xilinx LinkedIn group to get an update for every new Xcell Daily post! ******************** Steve Leibson is the Director of Strategic Marketing and Business Planning at Xilinx. He started as a system design engineer at HP in the early days of desktop computing, then switched to EDA at Cadnetix, and subsequently became a technical editor for EDN Magazine. He's served as Editor in Chief of EDN Magazine, Embedded Developers Journal, and Microprocessor Report. He has extensive experience in computing, microprocessors, microcontrollers, embedded systems design, design IP, EDA, and programmable logic.