We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

EEJournal’s Kevin Morris weighs in on Monday’s Xilinx reVISION stack launch for embedded-vision apps

by Xilinx Employee ‎03-14-2017 01:35 PM - edited ‎03-22-2017 07:20 AM (639 Views)


Image3.jpgToday, EEJournal’s Kevin Morris has published a review article of the announcement titled “Teaching Machines to See: Xilinx Launches reVISION” following Monday’s announcement of the Xilinx reVISION stack for developing vision-guided applications. (See “Xilinx reVISION stack pushes machine learning for vision-guided applications all the way to the edge.”


Morris writes:


But vision is one of the most challenging computational problems of our era. High-resolution cameras generate massive amounts of data, and processing that information in real time requires enormous computing power. Even the fastest conventional processors are not up to the task, and some kind of hardware acceleration is mandatory at the edge. Hardware acceleration options are limited, however. GPUs require too much power for most edge applications, and custom ASICs or dedicated ASSPs are horrifically expensive to create and don’t have the flexibility to keep up with changing requirements and algorithms.


“That makes hardware acceleration via FPGA fabric just about the only viable option. And it makes SoC devices with embedded FPGA fabric - such as Xilinx Zynq and Altera SoC FPGAs - absolutely the solutions of choice. These devices bring the benefits of single-chip integration, ultra-low latency and high bandwidth between the conventional processors and the FPGA fabric, and low power consumption to the embedded vision space.


Later on, Morris gets to the fly in the ointment:


“Oh, yeah, There’s still that “almost impossible to program” issue.”


And then he gets to the solution:


reVISION, announced this week, is a stack - a set of tools, interfaces, and IP - designed to let embedded vision application developers start in their own familiar sandbox (OpenVX for vision acceleration and Caffe for machine learning), smoothly navigate down through algorithm development (OpenCV and NN frameworks such as AlexNet, GoogLeNet, SqueezeNet, SSD, and FCN), targeting Zynq devices without the need to bring in a team of FPGA experts. reVISION takes advantage of Xilinx’s previously-announced SDSoC stack to facilitate the algorithm development part. Xilinx claims enormous gains in productivity for embedded vision development - with customers predicting cuts of as much as 12 months from current schedules for new product and update development.


In many systems employing embedded vision, it’s not just the vision that counts. Increasingly, information from the vision system must be processed in concert with information from other types of sensors such as LiDAR, SONAR, RADAR, and others. FPGA-based SoCs are uniquely agile at handling this sensor fusion problem, with the flexibility to adapt to the particular configuration of sensor systems required by each application. This diversity in application requirements is a significant barrier for typical “cost optimization” strategies such as the creation of specialized ASIC and ASSP solutions.


The performance rewards for system developers who successfully harness the power of these devices are substantial. Xilinx is touting benchmarks showing their devices delivering an advantage of 6x images/sec/watt in machine learning inference with GoogLeNet @batch = 1, 42x frames/sec/watt in computer vision with OpenCV, and ⅕ the latency on real-time applications with GoogLeNet @batch = 1 versus “NVidia Tegra and typical SoCs.” These kinds of advantages in latency, performance, and particularly in energy-efficiency can easily be make-or-break for many embedded vision applications.



But don’t take my word for it, read Morris’ article yourself.





About the Author
  • Be sure to join the Xilinx LinkedIn group to get an update for every new Xcell Daily post! ******************** Steve Leibson is the Director of Strategic Marketing and Business Planning at Xilinx. He started as a system design engineer at HP in the early days of desktop computing, then switched to EDA at Cadnetix, and subsequently became a technical editor for EDN Magazine. He's served as Editor in Chief of EDN Magazine, Embedded Developers Journal, and Microprocessor Report. He has extensive experience in computing, microprocessors, microcontrollers, embedded systems design, design IP, EDA, and programmable logic.