UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

FPGA-based Neuromorphic Accelerator board recognizes objects 7x more efficiently than GPUs on GoogleNet, AlexNet

by Xilinx Employee on ‎09-12-2017 10:47 AM (2,764 Views)

 

BrainChip Holdings has just announced the BrainChip Accelerator, a PCIe server-accelerator card that simultaneously processes 16 channels of video in a variety of video formats using spiking neural networks rather than convolutional neural networks (CNNs). The BrainChip Accelerator card is based on a 6-core implementation BrainChip’s Spiking Neural Network (SNN) processor instantiated in an on-board Xilinx Kintex UltraScale FPGA.

 

Here’s a photo of the BrainChip Accelerator card:

 

 

BrainChip FPGA Board.jpg 

 

BrainChip Accelerator card with six SNNs instantiated in a Kintex UltraScale FPGA

 

 

 

Each BrainChip core performs fast, user-defined image scaling, spike generation, and SNN comparison to recognize objects. The SNNs can be trained using low-resolution images as small as 20x20 pixels. According to BrainChip, SNNs as implemented in the BrainChip Accelerator cores excel at recognizing objects in low-light, low-resolution, and noisy environments.

 

The BrainChip Accelerator card can process 16 channels of video simultaneously with an effective throughput of more than 600 frames per second while dissipating a mere 15W for the entire card. According to BrainChip, that’s a 7x improvement in frames/sec/watt when compared to a GPU-accelerated CNN-based, deep-learning implementation for neural networks like GoogleNet and AlexNet. Here’s a graph from BrainChip illustrating this claim:

 

 

 

BrainChip Efficiency Chart.jpg 

 

 

 

 

SNNs mimic human brain function (synaptic connections, neuron thresholds) more closely than do CNNs and rely on models based on spike timing and intensity. Here’s a graphic from BrainChip comparing a CNN model with the Spiking Neural Network model:

 

 

 

 

BrainChip Spiking Neural Network comparison.jpg 

 

 

For more information about the BrainChip Accelerator card, please contact BrainChip directly.

 

 

Labels
About the Author
  • Be sure to join the Xilinx LinkedIn group to get an update for every new Xcell Daily post! ******************** Steve Leibson is the Director of Strategic Marketing and Business Planning at Xilinx. He started as a system design engineer at HP in the early days of desktop computing, then switched to EDA at Cadnetix, and subsequently became a technical editor for EDN Magazine. He's served as Editor in Chief of EDN Magazine, Embedded Developers Journal, and Microprocessor Report. He has extensive experience in computing, microprocessors, microcontrollers, embedded systems design, design IP, EDA, and programmable logic.