UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

Massive MIMO trials by BT, U of Bristol, U of Lund, and NI cram 2Gbps into 20MHz LTE channel—that’s ~100 bits/sec/Hz!

by Xilinx Employee ‎03-07-2017 10:55 AM - edited ‎03-09-2017 04:07 PM (813 Views)

 

A simple press release last month from the UK’s U of Bristol announced a 5G Massive MIMO milestone jointly achieved by BT, the Universities of Bristol and Lund, and National Instruments (NI): serving 2Gbps to 24 users simultaneously using a 20MHz LTE channel. That’s just short of 100 bits/sec/Hz and improves upon today’s LTE system capacity by 10x. The system that achieved this latest LTE milestone is based on the same Massive MIMO SDR system based on NI USRP RIO dual-channel SDR radios that delivered 145.6 bps/Hz in 5G experiments last year. (See “Kapow! NI-based 5G Massive MIMO SDR proto system “chock full of FPGAs” sets bandwidth record: 145.6 bps/Hz in 20MHz channel.”)

 

According to the press release:

 

“Initial experiments took place in BT’s large exhibition hall and used 12 streams in a single 20MHz channel to show the real-time transmission and simultaneous reception of ten unique video streams, plus two other spatial channels demonstrating the full richness of spatial multiplexing supported by the system.

 

“The system was also shown to support the simultaneous transmission of 24 user streams operating with 64QAM on the same radio channel with all modems synchronising over-the-air. It is believed that this is the first time such an experiment has been conducted with truly un-tethered devices, from which the team were able to infer a spectrum efficiency of just less than 100bit/s/Hz and a sum rate capacity of circa two Gbits/s in this single 20MHz wide channel.”

 

The NI USRP SDRs are based on Xilinx Kintex-7 325T FPGAs. Again, quoting from the press release:

 

“The experimental system uses the same flexible SDR platform from NI that leading wireless researchers in industry and academia are using to define 5G.  To achieve accurate, real-time performance, the researchers took full advantage of the system's FPGAs using LabVIEW Communications System Design and the recently announced NI MIMO Application Framework. As lead users, both the Universities of Bristol and Lund worked closely with NI to implement, test and debug this framework prior to its product release. It now provides the ideal foundations for the rapid development, optimization and evaluation of algorithms and techniques for massive MIMO.”

 

Here’s a BT video describing this latest milestone in detail:

 

 

 

 

 

 

 

Labels
About the Author
  • Be sure to join the Xilinx LinkedIn group to get an update for every new Xcell Daily post! ******************** Steve Leibson is the Director of Strategic Marketing and Business Planning at Xilinx. He started as a system design engineer at HP in the early days of desktop computing, then switched to EDA at Cadnetix, and subsequently became a technical editor for EDN Magazine. He's served as Editor in Chief of EDN Magazine, Embedded Developers Journal, and Microprocessor Report. He has extensive experience in computing, microprocessors, microcontrollers, embedded systems design, design IP, EDA, and programmable logic.