UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

cancel
Showing results for 
Search instead for 
Did you mean: 

Baidu details FPGA-based Cloud acceleration with 256-core XPU today at Hot Chips in Cupertino, CA

Xilinx Employee
Xilinx Employee
0 0 36.9K

 

Xcell Daily covered an announcement by Baidu about its use of Xilinx Kintex UltraScale+ FPGAs for the acceleration of cloud-based applications last October. (See “Baidu Adopts Xilinx Kintex UltraScale FPGAs to Accelerate Machine Learning Applications in the Data Center.”) Today, Baidu discussed more architectural particulars of its FPGA-acceleration efforts at the Hot Chips conference in Cupertino, California—according to Nicole Hemsoth’s article appearing on the NextPlatform.com site (“An Early Look at Baidu’s Custom AI and Analytics Processor”).

 

Hemsoth writes:

 

“…Baidu has a new processor up its sleeve called the XPU… The architecture they designed is aimed at this diversity with an emphasis on compute-intensive, rule-based workloads while maximizing efficiency, performance and flexibility, says Baidu researcher, Jian Ouyang. He unveiled the XPU today at the Hot Chips conference along with co-presenters from FPGA maker, Xilinx…

 

“’The FPGA is efficient and can be aimed at specific workloads but lacks programmability,’ Ouyang explains. ‘Traditional CPUs are good for general workloads, especially those that are rule-based and they are very flexible. GPUs aim at massive parallelism and have high performance. The XPU is aimed at diverse workloads that are compute-intensive and rule-based with high efficiency and performance with the flexibility of a CPU,’ Ouyang says. The part that is still lagging, as is always the case when FPGAs are involved, is the programmability aspect. As of now there is no compiler, but he says the team is working to develop one…

 

“’To support matrix, convolutional, and other big and small kernels we need a massive math array with high bandwidth, low latency memory and with high bandwidth I/O,” Ouyang explains. “The XPU’s DSP units in the FPGA provide parallelism, the off-chip DDR4 and HBM interface push on the data movement side and the on-chip SRAM provide the memory characteristics required.’”

 

According to Hemsoth’s article, “The XPU has 256 cores clustered with one shared memory for data synchronization… Somehow the all 256 cores are running at 600MHz.”

 

For more details, see Hemsoth’s article on the NextPlatform.com Web site.