UPGRADE YOUR BROWSER

We have detected your current browser version is not the latest one. Xilinx.com uses the latest web technologies to bring you the best online experience possible. Please upgrade to a Xilinx.com supported browser:Chrome, Firefox, Internet Explorer 11, Safari. Thank you!

Adam Taylor’s MicroZed Chronicles Part 93: SDSoC Debugging with Linux Part 9

by Xilinx Employee ‎07-27-2015 10:01 AM - edited ‎01-06-2016 01:41 PM (11,387 Views)

 

By Adam Taylor

 

Before I start on a more in-depth SDSoC example, I want to touch upon how we can debug our SDSoC application using the TCF debugger within SDSoC to watch register values, add beakpoints, etc.

 

TCF stands for the Target Communication Framework. This is a network protocol designed to enable debugging of embedded systems. TCF works at levels 5 to 7 in the OSI model used for a number of communication standards. We are running Linux for this application and we will be connecting to the target using an Ethernet connection, which means that we will need to ensure that our target board is connected to a network and that we can easily determine the target board’s assigned IP address.

 

The first step is to set the build configuration from “release” to “debug.” This is simple to do and is achevied by selecting the project, right clicking on it, and then clicking on Build Configuration->Set Active->SDDebug. This sequence ensures that when we next build the project—which we must do before we can debug it—the correct compliation switches are set to support the debugger.

 

Once we have built the debuggable version of the project, the next step is to create a debug configuration. We do this with the SDSoC Debugger, which uses TCF. However, we must first create a debug configuration.

 

 

 

 

Image1.jpg

 

 

Defining the Debug Configurations

 

 

 

Again we can declare the configuration by selecting the project, right clicking, and then selecting Debug As -> Debug Configurations. This will open the debug configurations page. Select the Xilinx SDSoC Application option from the left-hand side and select the “New” icon at the top. This will open a new dialog where we can define the parameters for our debugging environment.

 

 

 

Image2.jpg

 

 

Creating a new configuration

 

 

Once we have clicked on the “New” button, we need to establish the debug type. We are going to be using an Ethernet interface. From the debug type we need to select Linux Application Debug and for the connection type we need to select the IP address of our target board. SDSoC is intelligent and will automatically look for potential TCF connections. These can be seen in the C/C++ perspective of SDSoC in the lower left hand corner. You should see your system’s IP address listed there.

 

 

 

Image3.jpg

 

 

Auto detected TCF addresses

 

 

 

 

Image4.jpg

 

 

Setting the debug type and connection

 

 

 

Then on the application tab, we need to define the local file path and the remote file path. Once we have established these paths, we can apply the settings and run our debug session.

 

 

 Image5.jpg

 

 

 

Once we start the debugger, we notice that the SDSoC perspective will switch to the debug perspective. This view allows you to insert break points and observe memory and register values as with any debugger.

 

Once we have completed our debug session, we can switch back to the C/C++ perspective using the button on the top right of the menu bar:

 

 

 Image6.jpg

 

 

 

Having completed a very detailed introduction into SDSoC, I am going to spend the next few blogs looking at a more detailed example of SDSoC use.

 

 

 

 

 MicroZed Chronicles.jpg

 

 

 

 

 

Now, you can have convenient, low-cost Kindle access to the first year of Adam Taylor’s MicroZed Chronicles for a mere $7.50. Click here.

 

 

Please see the previous entries in this MicroZed Chronicles series by Adam Taylor:

 

Adam Taylor’s MicroZed Chronicles Part 92: SDSoC Verification & Build Issues Part 8

 

Adam Taylor’s MicroZed Chronicles Part 91: More on High-Level Synthesis and SDSoC, Part 7

 

Adam Taylor’s MicroZed Chronicles Part 90: Introduction to High-Level Synthesis and SDSoC, Part 6

 

Adam Taylor’s MicroZed Chronicles Part 89: SDSoC Optimization, Part 5

 

Adam Taylor’s MicroZed Chronicles Part 88: SDSoC Part 4—a look under the hood

 

Adam Taylor’s MicroZed Chronicles Part 87: Getting SDSoC up and running Part 3

 

Adam Taylor’s MicroZed Chronicles Part 86: Getting SDSoC up and running

 

Adam Taylor’s MicroZed Chronicles Part 85: SDSoC—the first instalment

 

Adam Taylor’s MicroZed(ish) Chronicles Part 84: Simple Communication Interfaces Part 4

 

Adam Taylor’s MicroZed(ish) Chronicles Part 83: Simple Communication Interfaces Part 3

 

Adam Taylor’s MicroZed(ish) Chronicles Part 82: Simple Communication Interfaces Part 2

 

Adam Taylor’s MicroZed(ish) Chronicles Part 81: Simple Communication Interfaces

 

Adam Taylor’s MicroZed Chronicles Part 80: LWIP Stack Configuration

 

Adam Taylor’s MicroZed Chronicles Chronicles Part 79: Zynq SoC Ethernet Part III

 

Adam Taylor’s MicroZed Chronicles Chronicles Part 78: Zynq SoC Ethernet Part II

 

Adam Taylor’s MicroZed Chronicles Microzed Chronicles Part 77 – Introducing the Zynq SoC’s Ethernet

 

Adam Taylor’s MicroZed Chronicles Part 76: Constraints for Relatively Placed Macros

 

Adam Taylor’s MicroZed Chronicles, Part 75: Placement Constraints – Pblocks

 

Adam Taylor’s MicroZed Chronicles, Part 73: Physical Constraints

 

Adam Taylor’s MicroZed Chronicles, Part 73: Working with other Zynq-Based Boards

 

Adam Taylor’s MicroZed Chronicles, Part 72: Multi-cycle Constraints

 

Adam Taylor’s MicroZed Chronicles, Part 70: Constraints—Clock Relationships and Avoiding Metastability

 

Adam Taylor’s MicroZed Chronicles, Part 70: Constraints—Introduction to timing and defining a clock

 

Adam Taylor’s MicroZed Chronicles Part 69: Zynq SoC Constraints Overview

 

Adam Taylor’s MicroZed Chronicles Part 68: AXI DMA Part 3, the Software

 

Adam Taylor’s MicroZed Chronicles Part 67: AXI DMA II

 

Adam Taylor’s MicroZed Chronicles Part 66: AXI DMA

 

Adam Taylor’s MicroZed Chronicles Part 65: Profiling Zynq Applications II

 

Adam Taylor’s MicroZed Chronicles Part 64: Profiling Zynq Applications

 

Adam Taylor’s MicroZed Chronicles Part 63: Debugging Zynq Applications

 

Adam Taylor’s MicroZed Chronicles Part 62: Answers to a question on the Zynq XADC

 

Adam Taylor’s MicroZed Chronicles Part 61: PicoBlaze Part Six

 

Adam Taylor’s MicroZed Chronicles Part 60: The Zynq and the PicoBlaze Part 5—controlling a CCD

 

Adam Taylor’s MicroZed Chronicles Part 59: The Zynq and the PicoBlaze Part 4

 

Adam Taylor’s MicroZed Chronicles Part 58: The Zynq and the PicoBlaze Part 3

 

Adam Taylor’s MicroZed Chronicles Part 57: The Zynq and the PicoBlaze Part Two

 

Adam Taylor’s MicroZed Chronicles Part 56: The Zynq and the PicoBlaze

 

Adam Taylor’s MicroZed Chronicles Part 55: Linux on the Zynq SoC

 

Adam Taylor’s MicroZed Chronicles Part 54: Peta Linux SDK for the Zynq SoC

 

Adam Taylor’s MicroZed Chronicles Part 53: Linux and SMP

 

Adam Taylor’s MicroZed Chronicles Part 52: One year and 151,000 views later. Big, Big Bonus PDF!

 

Adam Taylor’s MicroZed Chronicles Part 51: Interrupts and AMP

 

Adam Taylor’s MicroZed Chronicles Part 50: AMP and the Zynq SoC’s OCM (On-Chip Memory)

 

Adam Taylor’s MicroZed Chronicles Part 49: Using the Zynq SoC’s On-Chip Memory for AMP Communications

 

Adam Taylor’s MicroZed Chronicles Part 48: Bare-Metal AMP (Asymmetric Multiprocessing)

 

Adam Taylor’s MicroZed Chronicles Part 47: AMP—Asymmetric Multiprocessing on the Zynq SoC

 

Adam Taylor’s MicroZed Chronicles Part 46: Using both of the Zynq SoC’s ARM Cortex-A9 Cores

 

Adam Taylor’s MicroZed Chronicles Part 44: MicroZed Operating Systems—FreeRTOS

 

Adam Taylor’s MicroZed Chronicles Part 43: XADC Alarms and Interrupts 

 

Adam Taylor’s MicroZed Chronicles MicroZed Part 42: MicroZed Operating Systems Part 4

 

Adam Taylor’s MicroZed Chronicles MicroZed Part 41: MicroZed Operating Systems Part 3

 

Adam Taylor’s MicroZed Chronicles MicroZed Part 40: MicroZed Operating Systems Part Two

 

Adam Taylor’s MicroZed Chronicles MicroZed Part 39: MicroZed Operating Systems Part One

 

Adam Taylor’s MicroZed Chronicles MicroZed Part 38 – Answering a question on Interrupts

 

Adam Taylor’s MicroZed Chronicles Part 37: Driving Adafruit RGB NeoPixel LED arrays with MicroZed Part 8

 

Adam Taylor’s MicroZed Chronicles Part 36: Driving Adafruit RGB NeoPixel LED arrays with MicroZed Part 7

 

Adam Taylor’s MicroZed Chronicles Part 35: Driving Adafruit RGB NeoPixel LED arrays with MicroZed Part 6

 

Adam Taylor’s MicroZed Chronicles Part 34: Driving Adafruit RGB NeoPixel LED arrays with MicroZed Part 5

 

Adam Taylor’s MicroZed Chronicles Part 33: Driving Adafruit RGB NeoPixel LED arrays with the Zynq SoC

 

Adam Taylor’s MicroZed Chronicles Part 32: Driving Adafruit RGB NeoPixel LED arrays

 

Adam Taylor’s MicroZed Chronicles Part 31: Systems of Modules, Driving RGB NeoPixel LED arrays

 

 Adam Taylor’s MicroZed Chronicles Part 30: The MicroZed I/O Carrier Card

 

Zynq DMA Part Two – Adam Taylor’s MicroZed Chronicles Part 29

 

The Zynq PS/PL, Part Eight: Zynq DMA – Adam Taylor’s MicroZed Chronicles Part 28  

 

The Zynq PS/PL, Part Seven: Adam Taylor’s MicroZed Chronicles Part 27

 

The Zynq PS/PL, Part Six: Adam Taylor’s MicroZed Chronicles Part 26

 

The Zynq PS/PL, Part Five: Adam Taylor’s MicroZed Chronicles Part 25

 

The Zynq PS/PL, Part Four: Adam Taylor’s MicroZed Chronicles Part 24

 

The Zynq PS/PL, Part Three: Adam Taylor’s MicroZed Chronicles Part 23

 

The Zynq PS/PL, Part Two: Adam Taylor’s MicroZed Chronicles Part 22

 

The Zynq PS/PL, Part One: Adam Taylor’s MicroZed Chronicles Part 21

 

Introduction to the Zynq Triple Timer Counter Part Four: Adam Taylor’s MicroZed Chronicles Part 20

 

Introduction to the Zynq Triple Timer Counter Part Three: Adam Taylor’s MicroZed Chronicles Part 19

 

Introduction to the Zynq Triple Timer Counter Part Two: Adam Taylor’s MicroZed Chronicles Part 18

 

Introduction to the Zynq Triple Timer Counter Part One: Adam Taylor’s MicroZed Chronicles Part 17

 

The Zynq SoC’s Private Watchdog: Adam Taylor’s MicroZed Chronicles Part 16

 

Implementing the Zynq SoC’s Private Timer: Adam Taylor’s MicroZed Chronicles Part 15

 

MicroZed Timers, Clocks and Watchdogs: Adam Taylor’s MicroZed Chronicles Part 14

 

More About MicroZed Interrupts: Adam Taylor’s MicroZed Chronicles Part 13

 

MicroZed Interrupts: Adam Taylor’s MicroZed Chronicles Part 12

 

Using the MicroZed Button for Input: Adam Taylor’s MicroZed Chronicles Part 11

 

Driving the Zynq SoC's GPIO: Adam Taylor’s MicroZed Chronicles Part 10

 

Meet the Zynq MIO: Adam Taylor’s MicroZed Chronicles Part 9

 

MicroZed XADC Software: Adam Taylor’s MicroZed Chronicles Part 8

 

Getting the XADC Running on the MicroZed: Adam Taylor’s MicroZed Chronicles Part 7

 

A Boot Loader for MicroZed. Adam Taylor’s MicroZed Chronicles, Part 6 

 

Figuring out the MicroZed Boot Loader – Adam Taylor’s MicroZed Chronicles, Part 5

 

Running your programs on the MicroZed – Adam Taylor’s MicroZed Chronicles, Part 4

 

Zynq and MicroZed say “Hello World”-- Adam Taylor’s MicroZed Chronicles, Part 3

 

Adam Taylor’s MicroZed Chronicles: Setting the SW Scene

 

Bringing up the Avnet MicroZed with Vivado

 

 

 

Labels
About the Author
  • Be sure to join the Xilinx LinkedIn group to get an update for every new Xcell Daily post! ******************** Steve Leibson is the Director of Strategic Marketing and Business Planning at Xilinx. He started as a system design engineer at HP in the early days of desktop computing, then switched to EDA at Cadnetix, and subsequently became a technical editor for EDN Magazine. He's served as Editor in Chief of EDN Magazine, Embedded Developers Journal, and Microprocessor Report. He has extensive experience in computing, microprocessors, microcontrollers, embedded systems design, design IP, EDA, and programmable logic.